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Abstract 

Composite classifiers that are constructed by combining a number of 
component classifiers have been designed and evaluated on the problem 
of automatic target recognition (ATR) using forward-looking infrared 
(FLIR) imagery. Two existing classifiers, one based on learning vector 
quantization and the other on modular neural networks, are used as the 
building blocks for our composite classifiers. We analyze a number of 
classifier fusion algorithms, which combine the outputs of all the 
component classifiers, and classifier selection algorithms, which use a 
cascade architecture that relies on a subset of the component classifiers. 
Each composite classifier is implemented and tested on a large data set of 
real FLIR images. The performances of the proposed composite classifiers 
are compared based on their classification ability and computational 
complexity. We demonstrate that the composite classifier based on a 
cascade architecture greatly reduces computational complexity, with a 
statistically insignificant decrease in performance in comparison to 
standard classifier fusion algorithms. 
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1.    Introduction 

We propose methods of constructing a classifier architecture that combines 
several individual classifiers to form a composite classifier for the problem 
of automatic target recognition (ATR) using forward-looking infrared 
(FLIR) imagery. Many methods of combining several classifiers have been 
proposed to improve classification performance. These may be grouped 
into two basic approaches: classifier fusion and classifier selection [1,2]. In a 
classifier fusion algorithm, all classifiers are executed, and a mixing 
algorithm combines all the outputs from all the classifiers. Since all the 
classifiers contribute their outputs to a mixing algorithm, the 
computational complexity is no less than the sum of the computational 
complexities of all the classifiers. Cho and Kim [3] use fuzzy integrals to 
combine individual neural network classifiers trained with varying 
numbers of features. Turner and Ghosh [4] introduce an order statistic 
fusion algorithm and analyze its bias and variance as a function of the bias 
and variance of component classifiers. Jacobs et al [5] use an algorithm 
that adjusts mixing weights as a function of each input datum. A large 
number of voting schemes have been proposed, such as simple majority 
vote, the Borda count, and approval voting [6]. Other examples of 
classifier fusion algorithms can be found elsewhere [1,7-11]. In a classifier 
selection algorithm, a separate selection component chooses the 
appropriate classifier to classify each particular target image. The 
computational complexity of this approach is much lower than that of the 
classifier fusion algorithms, since not all the classifiers participate in 
classifying a target image. The classifier fusion algorithms tend to have 
better performance. For our ATR application, it is necessary to design a 
composite classifier that improves both classification performance and 
computational efficiency. 

The idea behind our integration of several classifiers is to have individual 
classifiers learn particular subspaces of data and to choose these subspaces 
so that they are as disjoint as possible, which allows performance 
improvement to be achieved by combining the classifiers. Approaches that 
one could take include: mixture of experts, different features, and different 
learning algorithms. In a mixture of experts algorithm [12], the experts are 
specialized when they learn different subspaces of data, and the final 
decision is obtained by the combination of the outputs of the experts in a 
linear manner. An integrating unit, called a gating network, is used to 



provide the weightings for the combination of the experts and /or to select 
an appropriate expert for classifying an input datum. In the second 
approach, various data transformations create different representations of 
data (different features). These representations can then be used to train 
separate classifiers. While the transformations do not add any 
information, they do affect the information captured by the learning 
algorithm, making some information more readily learnable and 
concealing some information from the learning algorithm. This means that 
algorithms trained using different transformations will not be perfectly 
correlated, and can potentially be combined to boost performance. For 
example, data with different time/frequency resolutions, created by a 
wavelet transform, are used to design stage neural networks in a parallel 
consensual neural network [7]. We have used the above two approaches to 
design two ATR classifiers, Automatic Target Recognizer Learning Vector 
Quantizer (ATRJLVQ) [13] and Automatic Target Recognizer Modular 
Neural Networks (ATR_MNN) [14]. The third approach is to design 
several classifiers with different learning algorithms and combine them 
with a mixing strategy. In this approach, each component classifier 
naturally creates different learning subspaces. We adopt this third 
approach to design and combine the two classifiers. The two ATR 
classifiers, ATR_LVQ and ATR_MNN, which have different learning 
algorithms, are used to implement the proposed composite classifiers. 

In this report, we propose a multi-stage selection strategy. The composite 
classifier consists of multiple stages of classifiers. The selection is based on 
the estimated quality of classification produced by the component 
classifiers. All target images are classified by the first stage classifier. Next, 
we define the certainty of classification as the output margin between the 
highest and the second highest confidence outputs of a classifier. By 
experiment we found that both ATR single classifier candidates tend to 
produce high certainties when a correct classification is made, while they 
produce low certainties when an incorrect classification is made. Because 
the probability of correct classification is correlated with certainty, we 
want to reject the classification results with low certainty and accept the 
classification results with high certainty. The classifier in the second stage 
classifies the low certainty target images and generates a new certainty of 
classification. The second stage classifier also rejects some target images 
with low certainty, which will be classified by the next stage classifier. This 
cascading method can be extended to any number of classifiers until 
satisfactory results are achieved. 

ATR is a technique that discloses potential targets in an image and then 
identifies the types of the targets. Most ATR designs consist of several 



stages [15]: At the first stage, a target detector, operating on an entire 
image, detects some potential targets, and marks the regions of interest for 
further processing. In order to reduce the false-alarm rate, the second 
stage uses a more sophisticated classification technique to reject false 
target-like objects (clutter) from the real targets. The third stage classifies 
each target image into one of a number of classes. This report focuses on 
the last stage: classification. 

Target recognition using FLIR imagery of natural scenes is difficult 
because of the variability of target thermal signatures. Collected under 
different meteorological conditions, times of the day, locations, ranges, etc, 
target signatures exhibit dramatic differences in appearance, as shown in 
figure 1. Moreover, partial target obscuration and the presence of 
target-like objects in the background make target recognition unreliable. 
The high variability of target signatures implies that large FLIR data sets 
are required if statistical learning algorithms are to generalize well [16]. 

Figure 1. Examples of 10 
target chips at viewing 
angle 90°. 

(a) HMMWV (b) BMP (c)T-72 (d) M-35 (e) ZSU 

(f) 2S1 
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(g) M-60 (h)M-113 (i) M-3 (j)M-1 



2.   Two ATR Classifiers 

Two recently developed ATR classifiers, one based on learning vector 
quantization that we call ATR_LVQ [13] and another based on modular 
neural networks called ATR_MNN [14], were used to implement the 
proposed composite classifier. ATRJLVQ is designed by separating the 
training images into target-aspect groups. Each target-aspect group 
contains only one target type within a restricted range of viewing angles. 
The training images are decomposed into wavelet subbands, and then 
each wavelet subband of each target-aspect group is clustered using the 
K-means algorithm in order to create a set of target templates (codevector). 
A modified learning vector quantization (LVQ) algorithm is then applied 
to the template's enhance discriminatory ability. Testing is performed by 
calculating the mean square error between an input image and every code 
vector. This classifier performs well on both training and testing sets; it 
achieves almost 100 percent accuracy on the training set and 93.50 percent 
on the testing set, as shown in table 1. Note that the computation 
complexity is measured by the CPU time for running 3,463 target images 
on the testing set on a SUN Ultra 1. This outcome is not surprising because 
VQ is a universal classifier, in that it can classify targets arbitrarily well 
given a sufficiently large number of codevectors and an adequate training 
set, at the cost of high computational complexity. 

The classifier ATRJMNN employs a hierarchical neural network 
architecture, specifically a mixture of experts modular neural network 
[12], with each expert consisting of a committee of neural networks [9] 
architecture. In the mixture of experts modular network, each expert is 
trained for a particular subset of data vectors. A gating network is trained 
to select or combine the outputs of expert networks in order to form the 
final output. The partitioning of the data set into several subsets is based 
on the similarity of target silhouettes. The silhouettes are binary images 
formed from computer-aided design (CAD) models of the targets, and the 
clustering is performed using the well-known K-means algorithm [16] on 

Table 1. Comparison of 
classification probability 
and computation 
complexity. 

Classifier Training     Testing 

Averaged Bayes classifier 99.11 94.48 

Stacked generalization method        99.66 95.32 

Cascade classifier 99.39 94.63 

Complexity (s) 

2133.0     (= 1936.0 + 197.0) 

2133.0    (= 1936.0 + 197.0) 

603.6     (= 197.0 + (1936.0 x 0.21)) 



the binary silhouettes. No optimal algorithm exists for partitioning the 
data set, so the choice of partitioning was guided by intuition and 
confirmed by experiment. Undoubtedly, further experimentation could 
lead to a superior partition. In the committee of networks, each member 
network receives distinct inputs, which are features extracted from one 
local region of the target image. That is, the input of a member network in 
the committee of networks is a sub-vector (the input data vector is 
partitioned). This reduces the dimensionality of the data, allowing each 
neural net to have fewer weights. The technique requires that the targets 
be reasonably close to the center of the input image because the networks 
are not shift invariant. It was determined experimentally that the centering 
error in our detector algorithm was small enough that it did not cause 
significant error in the recognition results. The classification decisions of 
the individual members of a committee of networks are combined using 
stacked generalization [10], which uses an additional neural network whose 
input is the output of the low-level neural nets. The classifier achieves 
good performance with much lower computational complexity than 
ATR-LVQ. The probabilities of correct classification for the training and 
testing sets are 97.44 and 92.06 percent, respectively. A heuristic 
comparison of the approaches of both classifiers is given in table 2. 

Both classifiers can accurately classify targets in the training set, but leave 
a performance gap for the testing set. It is doubtful that large 
improvements in performance could be obtained by minor changes to the 
architectures of these classifiers. For example, figure 2 shows the 
performance curve of ATRJLVQ in terms of its codevector usage. The first 
half of frequently used codevectors contributes around 95 and 88 percent 
accuracy for the training and the testing sets, respectively. The increase in 
performance due to the other half of the codevectors is only about 5 
percent for both data sets. Both performance curves nearly reach their 
maximum. Combining several classifiers to form a composite classifier 
seems a more promising way to improve classification performance. 

One of the major obstacles to achieving a high classification performance 
is that the training set is too small to adequately characterize the 
variability of FLIR signatures. This forces the ATR designer into a tradeoff 
between classifier complexity and generalization capability. If the 
algorithm is too complex for the training set, the performance on the 
training set will be quite high, while the performance on the testing set 
(the generalization) will be low. Typically, the number of free parameters 
in a learning algorithm should be approximately one tenth the number of 
training samples. This forces the classifier to be too simple. In other words, 
the performance of learning-based ATRs is data limited. Significantly 



improved performance is possible with a sufficiently large data set, but 
the cost of such a set is prohibitive. 

Table 2. Heuristic 
comparison of ATR.LVQ 
and ATRJvlNN classifiers. 

Approach ATR.LVQ ATRJV1NN 
Training 

Classification 

Implementation 

Learning algorithm 

Adaptation scope 

Feature type 

Feature decomposition 

Parameterized 

Testing speed 

CPU time to test testing set 

Performance 

Training set 

Testing set 

Clustering 

Template matching 

VQ,LVQ 

Largely unsupervised 

Localized 

Wavelet 

Wavelet subbands 

Aspect window by target 

Slow 

1936.0 s 

High 

99.47% 

93.50% 

Discriminant function 

Posteriori probability 

Neural network (MLP) 

Supervised 

Global 

Directional variance 

Local receptive field 

Silhouette category 

Fast 

197.0 s 

High 

97.34% 

92.20% 

Figure 2. Performance 
curve of classifier 
ATR.LVQ as function of 
codebook usage. 

CO 
CO 
CO 

S3 p 
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3.    Composite Classifier Architectures 

Let us define the notation used in this report. Suppose we have a set of K 
classifiers, Ck, each of which classifies targets into one of Q distinct classes, 
where k = 1,2,..., K. The output vector of classifier Ck, given a target X, 
is represented by a column vector 

Yk = {yKq;q = 1,2,...,Q), (1) 

where the qih component of the output vector, yk,g, represents the 
estimated posteriori probability that target X belongs to the class q, 
estimated by classifier Ck. We can then express the estimated posteriori 
probability as the desired posteriori probability p(q\X) plus an error 
efc,9(

x): 

yk,q=p(q\X) + ek,g(X). (2) 

For notational convenience, we do not explicitly express the dependence 
of outputs ykjg on variable X, where X is the input of each individual 
classifier Ck. The ground truth class of a target X is 6T. The output vector 
of a composite classifier, C, given a target X, is represented by a column 
vector 

Y(K) = {yq(X);q = l,2,...,Q}, (3) 

where yq(X), the qüi component of the output vector, is the estimated 
posteriori probability that target X belongs to the class q. 

The classification decision of classifier Ck is 

6k = arg max yKq. (4) 

The final decision of a composite classifier C is 

The efficiency of a composite classifier is also considered. The 
computational complexities of classifier Ck and a composite classifier C are 
denoted as rk (k — 1,2,..., K) and r, respectively. 

We propose a multi-stage classifier using quality-based classifier selection. 
We also implement two other composite algorithms that use classifier 
fusion for comparison to our proposed algorithms, which are presented 
first. 



3.1   Averaged Bayes Classifier 

This simple mixing algorithm takes the average outputs of a set of 
classifiers as a new estimated posteriori probability of a composite 
classifier. 

Y = -p£Y*. (6) 

1    * 
or equivalently, 

Vq = J? Y, Vk,q- (7) 
fe = i 

The final decision C made by this composite classifier is given by 

9 = arg max:yq. (8) 
isqsQ 

Thus, each individual classifier is weighted equally. 

This mixing algorithm is called an averaged Bayes classifier by Xu et al 
[11], where they assumed that all individual classifiers are Bayes 
classifiers. Perrone [9] has shown theoretically that the averaging over the 
outputs of a set of neural networks can improve the performance of a 
neural network, in terms of any convex cost function. This algorithm 
provides not only better performance, but also better generalization than a 
single classifier. 

Because the computational overhead to combine classifiers is minimal, the 
computational complexity approximately equals 

K 

T = E r*- (9) 
k = l 

3.2   Stacked Generalization Method 

The averaged Bayes classifier algorithm treats each individual classifier 
equally. However, it is possible that some classifiers can make better 
decisions than others for some targets. Thus, we can reduce the 
probability of misclassification if we assign larger weightings to some 
classifiers than to other classifiers for some targets. Two approaches that 
provide linear weighting to individual classifiers are explored by 
Benediktsson [7] and Perrone [9]. The first approach, called generalized 
committee [9], obtains the weighting of each component classifier by 
solving the error correlation matrix. The second approach, similar to the 
generalized committee, is supported by consensus theory [7]. The optimal 
weighting is obtained by solving the Weiner-Hopf equation. 



Better performance can be expected if nonlinear weighting is applied to 
individual classifiers, since a linear function is a special case of a nonlinear 
function. The stacked generalization method [10] is a general approach 
that combines a set of classifiers to obtain a final decision. A multilayer 
perceptron (MLP) neural network that receives the output of all classifiers 
can be trained to implement the combination: 

Y = *(Y1,Y2,..-.,Yfc), (10) 

where $(•) is an MLP that implements the stacked generalization. This 
MLP provides a nonlinear weighting to the outputs of individual 
classifiers. The architecture is shown in figure 3. 

The computational complexity of the stacked generalization method is 
expressed as follows: 

K 

T =   YL  Tk + TSg, (11) 
fc = l 

where rsg is the computational complexity computed by the stacked 
generalization neural network. In general, rsg is much smaller than any T\.. 

The above two algorithms are data fusion algorithms, which execute all 
classifiers in parallel. Thus, the computational complexities are equal to 
the sum of the computational complexities of all classifiers and the 
combination algorithm. 

Figure 3. Architecture of 
stacked generalization 
classifier. 

Final classification 

Target chip 



3.3    Quality-Based Cascade Classifier 

A cascade classifier consists of several different classifiers cascaded 
together. All target images are classified by the first stage classifier, and 
targets that are not classified with high certainty are passed to the next 
stage classifier. We define the certainty of classification as the output for the 
winning class minus the highest output among the losing classes. By 
experiment we found that both ATR single classifier candidates tend to 
produce high certainties when a correct classification is made, while they 
produce low certainties when an incorrect classification is made. Because 
the probability of correct classification is correlated with certainty, we 
want to reject the classification results with low certainty and accept the 
classification results with high certainty. We define the threshold at stage k 
to be Afc. The second stage classifier classifies each of the target images 
with certainty less than Ai, and generates a new certainty of classification 
for each input image. The second stage classifier also rejects those target 
images with certainty below A2, which will be classified by the next stage 
classifier. This constructive method can be extended to any number of 
classifiers until satisfactory results are achieved. The Afc were chosen by 
experiment. Each Afc was set between 0 and 1 in increments of 0.1, and the 
resulting classification performance and computational complexity 
tradeoff was calculated on the training set. The proposed method is 
illustrated in figure 4 and outlined below. 

STEP 0:   Given the target data set T = [X,; I = 1,2,..., M] and a set of K 
well-designed classifiers Ck, where k = l,2,...,K, select the 
threshold values Xk for each stage. Set A; <- 1. 

Figure 4. Architecture of 
cascade classifier. 

Final classification ^ e 

Target chip 

Jt—1 *• ^A-1 

0* 

x 
Classification by classifier k 
Certainty level 

k     Threshold values for certainty level 

10 



STEP1:   SetZ«-l. 

STEP 2:   If I < M then set A; <- 1; otherwise, STOP. 

STEP 3:   Classify X^ by classifier Cfc. Obtain the certainty of classification 
4>k(X-i). 

topi =   maxvfc,9(Xj) (12) 
1<<J<V 

top2 =       max     yfc,9(Xz) (13) 

^fc(Xj) = topi - top2 (14) 

STEP 4:   If current classifier is the last stage classifier or a high certainty of 
classification is obtained at this stage, then the decision of this stage 
classifier is the final decision. Otherwise, this target image is sent to 
the next stage classifier. 

l£{(k = K) or (0fc(Xj) > A*) }, then 
e = ek, 
I *- l+l, 
go to step 2. 

Otherwise, 
Set k <- k+1, 
go to step 3. 

Figure 5 shows the distributions of certainty of classification for both 
correct and incorrect classifications for classifiers ATR-MNN and 
ATR-LVQ. It can be seen in figure 5 that most of the correctly classified 
target images have high certainty, whereas most of the incorrectly 
classified target images have low certainty. 

The average computational complexity is the sum 

K 

r = Ti + ^2pkrk, (15) 
fc=2 

where the pk is the percentage of the data that are classified by classifier Ck 

(k = l,2,...,K). The classifiers at the other stages classify only a portion 
of the data that are classified by the previous stage classifiers, so that 

0 < Pk < 1, 2 < k < K,  and (16) 

1 = Pi > P2 > • • • > Pk > 0. (17) 

Compared to the other composite algorithms discussed, the 
computational complexity of this algorithm is lower: 

fc=2 ) U=l 

11 



Figure 5. Distributions of 
confidence levels for 
classifiers ATR.LVQ and 
ATR_MNN (in semi-log 
scale): (a) training set of 
ATR.LVQ, (b) training set 
of ATRJ4NN, (c) testing 
setofATR.LVQ,and 
(d) testing set of 
ATTLMNN. 
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The complexities are equivalent only when the threshold values Xk at each 
stage are set to the highest value 1.0 so that the classifiers at each stage 
reject all the target images. Since this combination algorithm selects the 
classification decision of one of the classifiers to be the final decision, the 
largest possible correct classification set is the union of all of the correct 
classifications of all the classifiers. 

Let Ü be the data set and nk be the subset of this data set that classifier Ck 

can correctly classify. Let N() be the number of target images in a set. The 
set of data correctly classified by the cascade algorithm must always be a 
subset of 

K 

&u =  [J fife- 
k=i 

The best possible probability of correct classification for this cascade 
algorithm is 

N{ÜU) 

(19) 

N(ft) (20) 

It should be noted that the classifier fusion algorithms are not restricted by 
this upper bound. It is possible for the fused classifier to correctly classify 
a target that none of the individual classifiers correctly classify. We shall 

12 



see that the this upper bound does not seriously affect performance, since 
the classifier fusion algorithms classify almost none of the target images 
that are not correctly classified by any of the components. 

13 



4.   Simulation and Experimental Results 

The classifier has been trained and tested on the U.S. Army Comanche 
imagery set. This data set contains 10 military ground vehicles viewed 
from a ground-based, second-generation FLIR. The targets are viewed 
from arbitrary aspect angles, which are recorded in the ground truth 
(rounded to the nearest 5°). The images contain cluttered backgrounds 
and some partially obscured targets. The target signatures vary greatly, 
because the imagery was collected at different times of day and night, at 
different locations (Michigan, Arizona, and California), during different 
seasons, under varying weather conditions, and in different target exercise 
states. Figure 1 shows examples of target chips for the 10 military ground 
vehicles, selected from 2 FLIR imagery signature sets, called SIG and ROI, 
at viewing angle 90°. The data set contains 17,316 images, which are 
partitioned into a training set of 13,853 images, and a test set of 3,463 
images. Classifiers are trained or designed using only the training set. The 
testing test is used to evaluate the genaralization performance of the 
classifiers. 

4.1   Individual Classifier Performance 

The two classifiers, ATRJLVQ and ATRJVINN, were designed using the 
same training and testing sets. The probabilities of correct classification for 
the training and testing sets, performed by the classifier ATRJLVQ, are 
99.47 and 93.50 percent, respectively. The probabilities of correct 
classification using ATRJVINN are 97.34 and 92.20 percent, respectively. 
The confusion matrices of both classifiers for the testing data sets are 
shown in tables 3 and 4. The performance of ATRJLVQ is slightly better 
than that of ATRJVINN, in terms of the probability of correct classification. 
However, the computational complexity of ATRJVINN is much lower; it 
needs only one tenth of the CPU time of ATRJLVQ. The neural networks 
execute quite quickly once training is completed, while the ATRJLVQ 
algorithm must compare the input images to each of the 1159 code vectors 
in the codebook. 

Figure 6 shows the performance of classifiers ATR_LVQ and ATRJVINN 
on the training and testing sets. We have also broken down the 
probabilities of correct classification into categories to show the level of 
independence of the two classifiers. The figure shows that 4.76 percent of 

14 



Table 3. Confusion matrices of ATR.LVQ on training (99.47%) and testing (93.50%) sets. 

Type HMMWV BMP T-72 M-35 ZSU-23 2S1 M-60 M-113 M-3 M-l Percentage Total 

Training set 

HMMWV 1691 1 0 0 0 0 1 0 1 2 99.71 1696 

BMP 4 1657 0 0 0 0 1 0 0 0 99.70 1662 

T-72 2 4 1805 1 1 2 3 0 1 1 99.18 1820 

M-35 2 0 2 1576 1 2 0 0 1 1 99.43 1585 

ZSU-23 2 0 4 0 1165 0 0 1 1 0 99.32 1173 

2S1 1 0 2 3 1 1165 0 2 0 0 99.23 1174 

M-60 2 1 1 2 0 1 1699 0 0 1 99.53 1707 

M-113 0 2 0 0 1 0 0 695 0 2 99.29 700 

M-3 4 2 0 0 0 1 0 1 1161 0 99.32 1169 

M-l 0 1 1 0 0 0 0 0 0 1165 99.83 1167 

Testing set 

HMMWV 415 1 2 0 1 0 2 0 2 1 97.88 424 

BMP 11 390 4 1 1 2 1 0 5 1 93.75 416 

T-72 2 12 425 2 1 0 3 1 6 2 93.61 454 

M-35 7 2 2 377 3 1 4 0 0 1 94.96 397 

ZSU-23 1 0 2 5 276 0 3 0 3 3 94.20 293 

2S1 5 3 3 6 0 271 0 3 1 2 92.18 294 

M-60 3 2 7 3 5 1 392 1 5 8 91.80 427 

M-113 4 3 2 4 0 1 1 154 3 2 88.51 174 

M-3 6 5 0 6 3 0 1 4 267 1 91.13 293 

M-l 3 1 1 1 2 0 7 2 3 271 93.13 291 

the target images in the testing set are correctly classified by ATJLLVQ but 
are not correctly classified by ATRJMNN, and 3.47 percent of the target 
images in the testing set are correctly classified by ATRJMNN but are not 
correctly classified by ATR_LVQ. This implies that a composite classifier 
that has the ability to choose between using the ATR_LVQ and ATRJMNN 
outputs (i.e., a hard limited gating network) has a theoretical upper bound 
of 96.97 percent. The disjoint outcome of these two classifiers suggests that 
we can improve the performance of an ATR classifier by combining both 
classifiers to form a final decision. 
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Table 4. Confusion matrices of ATR_MNN on training (97.34%) and testing (92.20%) sets. 

Type HMMWV BMP T-72 M-35 ZSU-23 2S1 M-60 M-113 M-3 M-l Percentage Total 
Training set 

HMMWV 1654 12 9 5 4 1 3 4 2 2 97.52 1696 
BMP 5 1626 4 1 2 11 3 2 3 5 97.83 1662 
T-72 3 9 1768 2 1 8 14 1 6 8 97.14 1820 
M-35 8 0 1 1561 0 2 4 4 1 4 98.49 1585 
ZSU-23 1 0 2 0 1149 5 4 2 5 5 97.95 1173 
2S1 0 17 1 1 3 1140 2 5 2 3 97.10 1174 
M-60 5 9 16 9 6 4 1648 2 5 3 96.54 1707 
M-113 3 3 2 2 2 4 7 666 0 11 95.14 700 
M-3 2 8 3 3 0 5 5 7 1133 3 96.92 1169 
M-l 0 12 2 2 0 0 6 4 1 1140 97.69 1167 

Testing set 

HMMWV 408 2 2 4 1 2 0 3 0 2 96.23 424 
BMP 3 398 1 1 4 7 0 0 0 2 95.67 416 
T-72 1 10 415 1 2 4 9 3 4 5 91.41 454 
M-35 5 6 1 369 3 2 3 4 1 3 92.95 397 
ZSU-23 4 4 1 0 265 4 7 1 6 1 90.44 293 
2S1 1 10 4 3 1 268 1 4 1 1 91.16 294 
M-60 1 2 11 5 5 1 393 2 3 4 92.04 427 
M-113 2 1 2 3 0 4 2 156 1 3 89.66 174 
M-3 2 5 2 2 3 3 4 8 253 11 86.35 293 
M-l 3 3 3 2 0 4 4 2 2 268 92.10 .291 

Figure 6. Performance 
comparison of ATRXVQ 
and ATR_MNN classifiers 
on the training and testing 
sets. 

Ü3ÜI 

Training set Testing set 

B Percentage of targets correctly classified by both ATR_LVQ and ATR_MNN 
M Percentage of targets correctly classified by ATR_LVQ only 
H Percentage of targets correctly classified by ATR_MNN only 
D Percentage of targets incorrectly classified by both ATR_LVQ and ATR_MNN 
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4.2   Results of Combination Algorithms 

4.2.1 Result of Averaged Fayes Classifier 

The averaged Bayes classifier takes the average outputs of classifiers 
ATRJLVQ and ATRJMNN as a new estimated posteriori probability, as 
shown in eq (6). The result of the averaged Bayes classifier is shown in 
table 5. The probabilities of correct classification for the training and 
testing sets are 99.11 and 94.48 percent, respectively. It improves 
0.98 percent for the testing set, but drops around 0.36 percent for the 
training set. 

Table 5 shows the probabilities of correct classification of the four 
categories, performed by the averaged Bayes classifier, for the training and 
the testing sets. The averaged Bayes classifier can correctly classify, with 
100-percent accuracy, the target images that are correctly classified by both 
classifiers ATR.LVQ and ATR_MNN. About 0.28 and 3.12 percent out of 
the 0.33 and 3.47 percent in the subset of the data correctly classified by 
ATR-MNN only are recognized correctly. This corresponds to 85 and 
90 percent for the training and testing sets. The averaged Bayes classifier 
recognized only 1.82 and 2.63 percent, which are 74 of 2.45 percent and 
55 of 4.76 percent, respectively, for the subset of the training and testing 
sets that were correctly classified by ATRJLVQ only. By averaging the 
outputs of these two classifiers, we see that both classifiers contribute the 
improvement in different levels. 

4.2.2 Result of Stacked Generalization Method 

An MLP neural network was designed to implement the stacked 
generalization. The inputs of the MLP are the outputs of the two 
classifiers, so that the MLP has 20 input nodes. The outputs of the MLP are 
the estimated posteriori probabilities for 10 target classes, so that the MLP 
has 10 output nodes. We designed several MLPs with different numbers of 
hidden nodes. The simulation results of these MLPs are shown in table 6. 
All the MLPs do improve the performance of both data sets. The MLPs 
with different numbers of hidden nodes generate almost equal 
performance, suggesting that the optimal output combination algorithm is 
relatively simple. Among them, the MLP with 20 hidden nodes is the best 
for both data sets. As we can see, stacked generalization is better than the 
averaged Bayes classifier, because the nonlinear weighting function is 
somewhat superior to the averaged sum function. Actually, we will see 
later that the stacked generalization method is the best combination 
method among the methods implemented in this report, in terms of the 
probability of correct classification. 
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Table 5. Performance of 
averaged Bayes classifier 
on training and testing 
sets, partitioned by single 
classifier performance. 

Category Training Testing 

Correctly classified by both 97.01/97.01 88.74/88.74 

Correctly classified by ATR.LVQ only 1.82/2.45 2.63/4.76 

Correctly classified by ATR.MNN only 0.28/0.33 3.12/3.47 

Incorrectly classified by both 0.00/0.20 0.00/3.03 

Averaged Bayes classifier (sum of above) 99.11/100 94.48/100 

Table 6. Performance of 
stacked generalization 
method on training and 
testing sets, partitioned by 
single classifier 
performance. 

Category Training Testing 
Correctly classified by both 

Correctly classified by ATRXVQ only 

Correctly classified by ATR_MNN only 

Incorrectly classified by both 

97.01/97.01 88.74/88.74 

2.43/2.45 3.96/4.76 

0.22/0.33 2.57/3.47 

0.00/0.20 0.03/3.03 
Stacked generalization method (sum of above)       99.65/100       95.29/100 

Table 6 shows the probabilities of correct classification of the four 
categories, performed by the stacked generalization method, for the 
training and the testing sets. It can be seen that the stacked generalization 
method can correctly classify with 100-percent accuracy, the target images 
that are correctly classified by both classifiers ATRXVQ and ATRJMNN. 
The MLP favors the outputs of the ATRXVQ. 

Conceivably, the MLP may learn how to correctly classify a significant 
portion of those target images that are not correctly classified by either 
classifier. However, we do not obtain this result in our simulation. We 
correctly classify only one image target (0.03%), which is incorrectly 
classified by both classifiers for the testing set. 

4.2.3   Result of Quality-Based Cascade Classifier 

We implemented a two-stage composite classifier to demonstrate the 
effectiveness of the quality-based cascade classifier. Since the computation 
of the ATR_MNN is more efficient than that of the ATRXVQ, we use the 
ATRJV1NN as the first stage and the ATRXVQ as the second stage. 
Figure 7 shows the probability of correct classification and the CPU time 
of this two-stage classifier on the testing set, at 11 different thresholds for 
the certainty of classification, using increments of 0.1 from 0.0 to 1.0. If the 
threshold value is set to 1.0, the ATRJV1NN (the first stage) rejects every 
target image and the ATRXVQ (the second stage) has to perform 
classification for the whole data set, so that performance is equivalent to 
the ATRXVQ alone with CPU time equal to the sum of the classifiers. 
When the threshold value is set to 0.0, the ATRJVINN (the first stage) is 
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Figure 7. Performance and 
CPU time of cascade 
classifier at various 
threshold values. 

0.95 
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used to classify all target images and leaves no target images to the 
ATR_LVQ (the second stage). This combination is equivalent to the 
ATRJvINN alone in both performance and CPU time. 

By using different threshold values, we obtain different two-stage 
classifiers. Among them, the combination with a threshold value 0.9 has 
the highest probability of correct classification, 94.63 percent for the 
testing set. A total of 2730 (78.83%) out of 3463 test images have a certainty 
of classification of at least 0.9. Thus, the ATR_LVQ classifies only 733 
(21.17%) test images. The CPU time is much less than the CPU time 
needed by the ATR_LVQ, while the probability of correct classification for 
the cascade classifier is improved by 1.13 and 2.43 percent, when 
compared to that of the ATRJLVQ and the ATR_MNN, respectively. The 
probability of correct classification performed by the ATRJLVQ on these 
2730 target images is 98.97 percent. 

Table 7 shows the probabilities of correct classification of the four 
categories, performed by this two-stage classifier, for the training and the 
testing sets. As expected, this two-stage classifier attains 100 percent 
performance on the target images that are correctly classified by both 
ATR_LVQ and ATR_MNN. 

We also implemented a two-stage classifier that uses the ATRJLVQ as the 
first stage and the ATRJMNN as the second stage (see table 8). The highest 
probabilities of correct classification for the training and testing sets are 
99.60 and 94.54 percent, respectively, when the threshold value is set to 
0.3. This two-stage composite classifier does improve the performance, but 
the CPU time is slightly greater than that of the ATRJLVQ alone. 
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Table 7. Performance of 
cascade classifier on 
training and testing sets, 
partitioned by single 
classifier performance. 

Table 8. Performance of 
stacked generalization 
method with different 
numbers of hidden nodes. 

Category Training Testing 
Correctly classified by both 

Correctly classified by ATRJLVQ only 

Correctly classified by ATR_MNN only 

Incorrectly classified by both 

Proposed cascade classifier (sum of above)       99.39/100       94.63/100 

97.01/97.01 88.74/88.74 

2.26/2.45 4.33/4.76 

0.12/0.33 1.56/3.47 

0.00/0.20 0.00/3.03 

Data set Number of hidden nodes 

5          10        20        40 

Training 

Testing 

99.55    99.59    99.65    99.60 

94.98     95.29    95.29     95.24 

We observe the confusion matrices of the ATR_LVQ and the ATR_MNN for 
the testing set, as shown in tables 3 and 4. Both classifiers have excellent 
classification accuracy for target class high-mobility, multiwheeled vehicle 
(HMMWV), while both have poor performance for target classes M-113 
and M-3. Target class ZSU-23 can be classified well by the ATRJLVQ, but 
poorly classified by the ATRJMNN, while target class M-60 is poorly 
classified by the ATR.LVQ, but classified well by the ATRJMNN. We can 
evaluate the performance of the stacked generalization method and the 
cascade classifier for these five target classes, as seen in tables 9 and 10. 

Both the stacked generalization method and the cascade classifier do 
improve the accuracy for target class HMMWV. The stacked 
generalization method has a large improvement for target classes M-113 
and M-3, although the probabilities of correct classification for these two 
classes are still the lowest among the 10 target classes. The cascade 
classifier also improves the probabilities of correct classification for these 
two classes, but not as significantly as stacked generalization does. The 
stacked generalization does not classify target class ZSU-23 as well as the 
ATR.LVQ. The cascade composite classifier outperforms both single 
classifiers. 
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Table 9. Performance of stacked generalization method on the training (99.65%) and testing (95.29%) sets. 

Type HMMWV BMP T-72 M-35 ZSU-23 2S1 M-60 M-113 M-3 M-l Percentage Total 

Training set 

HMMWV 1693 2 0 0 Or 0 0 0 0 1 99.82 1696 

BMP 1 1658 2 0 0 1 0 0 0 0 99.76 1662 

T-72 2 1 1811 1 0 1 2 0 1 1 99.51 1820 

M-35 1 0 1 1580 0 2 0 0 0 1 99.68 1585 

ZSU-23 0 0 2 0 1168 0 1 2 0 0 99.57 1173 

2S1 0 0 1 0 2 1170 0 1 0 0 99.66 1174 

M-60 2 1 1 1 0 1 1700 0 0 1 99.59 1707 

M-113 1 1 0 0 1 0 0 696 0 1 99.43 700 

M-3 4 0 0 0 0 1 0 0 1164 0 99.57 1169 

M-l 0 0 2 0 0 0 0 0 0 1165 99.83 1167 

Testing set 

HMMWV 418 2 2 0 0 0 0 0 0 2 98.58 424 

BMP 6 402 2 0 0 3 0 0 2 1 96.63 416 

T-72 0 8 431 2 0 2 7 0 2 2 94.93 454 

M-35 7 1 2 384 0 1 2 0 0 0 96.73 397 

ZSU-23 3 2 2 1 275 2 3 0 5 0 93.86 293 

2S1 2 4 2 3 0 279 1 1 2 0 94.90 294 

M-60 3 2 7 2 3 0 403 2 2 3 94.38 427 

M-113 1 2 2 2 0 1 2 162 0 2 93.10 174 

M-3 0 5 2 2 1 2 2 4 272 3 92.83 293 

M-l 1 0 0 0 1 4 7 3 1 274 94.16 291 
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Table 10. Performance of quality-based multiple-stage classifier method on the training (99.65%) and testing (95.29%) 
sets. 

Type HMMWV BMP T-72 M-35 ZSU-23 2S1 M-60 M-113 M-3 M-l Percentage Total 
Training set 

HMMWV 1691 2 0 0 0 0 0 0 1 2 99.71 1696 
BMP 3 1655 0 0 0 2 1 0 0 1 99.58 1662 
T-72 2 4 1807 0 0 1 5 0 0 1 99.29 1820 
M-35 2 0 1 1577 1 2 0 0 1 1 99.50 1585 
ZSU-23 1 0 2 0 1166 1 0 2 1 0 99.40 1173 
2S1 1 4 2 3 1 1161 0 2 0 0 99.66 1174 
M-60 2 3 3 1 1 1 1695 0 0 1 99.30 1707 
M-113 1 2 0 1 1 0 1 691 0 3 98.71 700 
M-3 4 0 0 0 0 1 0 2 1162 0 99.40 1169 
M-l 0 2 1 0 0 0 0 0 0 1164 99.74 1167 

Testing set 

HMMWV 418 0 2 1 0 0 0 0 2 1 98.58 424 
BMP 9 399 3 0 0 2 0 0 2 1 95.91 416 
T-72 2 11 429 2 1 0 3 1 4 1 94.49 454 
M-35 7 2 1 380 1 1 4 0 0 1 95.72 397 
ZSU-23 2 1 2 4 278 0 2 0 2 2 94.88 293 
2S1 4 7 1 4 0 274 0 1 1 2 93.20 294 
M-60 3 2 6 3 5 1 397 1 5 4 92.97 427 
M-113 3 2 2 2 0 1 0 160 2 2 91.95 174 
M-3 5 4 0 5 2 0 2 4 266 5 90.78 293 
M-l 2 0 1 1 1 2 5 0 3 276 94.85 291 
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5.    Conclusions 

We have proposed, implemented, and demonstrated the utility of 
classifier selection combination algorithms that demonstrate high 
performance with relatively low average computational complexity. 
Performance and computational complexity of these algorithms are 
compared to standard techniques. The individual classifiers used in the 
composite classifiers have been described elsewhere. All experiments have 
been performed on a large database of challenging FLIR images. 
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